EOS of North America Inc., Nov, MI, and aerospace giant Airbus Group Innovations have partnered together in a study to illustrate the environmental and cost saving benefits of 3D printing in aerospace manufacturing.

Conventional design of the steel cast bracket (upper left) environmentally assessed against the EOS titanium 3D-made bracket (lower right)Click image to enlarge

The study was an environmental lifescycle comparison of two production technologies: rapid investment casting and Direct Metal Laser Sintering (DMLS).

The assessment, applied to an Airbus A320 nacelle hinge bracket (a highly standardized part), strove to include detailed aspects of the overall lifecycle: from the supplier of the raw powder metal, to the equipment manufacturer (EOS), and to the end-user (Airbus Group Innovations). Adapted from Airbus' streamlined lifecycle assessment (SLCA) and ISO 14040 series requirements data, the testing will serve as the basis for continued "Cradle-to-Cradle" study into other aerospace parts, processes and end-of-life strategies.Waste produced as weighted by the "embodied" energy for each process (in kW)Click image to enlarge

"We have worked in a bold, new collaboration with Airbus Group Innovations on integrating business and ecological sustainability from sourcing through to product development," says Nicola Knoch, environmental and sustainability consultant to EOS. "There is now a valuable, holistic baseline established on our technology regarding the measurable costs, benefits and impacts of DMLS. This sets the groundwork for future technology developments in Additive Manufacturing and further studies."Emissions of carbon dioxide through the static (i.e. manufacturing) phases of the different design optionsClick image to enlarge

As a first step, the SLCA was conducted on a generic bracket benchmarking the DMLS process with a conventional casting process used as the baseline. Comparing the lifecycle of a steel bracket (casting process) with the lifecycle of a design-optimized titanium bracket (DMLS):

· The use phase has by far the biggest impact in terms of energy consumption and CO2 emissions over the whole lifecycle of the bracket.

· CO2 emissions over the whole lifecycle of the nacelle hinges were reduced by nearly 40 percent via weight saving that resulted from an optimized geometry, which is enabled by the design freedom offered by the DMLS process and the use of titanium.

· Most significantly, using DMLS to build the hinge may reduce the weight per plane by 10 kilograms, a noteworthy saving when looking at industry "buy-to-fly" ratios.

The second phase of the analysis focused on the manufacturing process for the design-optimized bracket using titanium as an ideal, common material—and, this time, benchmarking the manufacturing process of investment casting against that of DMLS via the EOSINT M 280 system:

  • The total energy consumption for creating the initial raw powder metal, then producing the bracket in DMLS, was slightly smaller than the equivalent cast process steps (with the higher energy use of DMLS limited to the melt and chill cycle of its manufacturing profile and offset at the same time by a significantly reduced build time). Casting in this comparison was burdened with the furnace operation of burning an SLA (stereolithography) epoxy model, which uses considerable energy and generates greenhouse gases.
  • The DMLS process itself used only the material actually needed to make the part—thereby eliminating waste from secondary machining and reducing consumption of titanium by 25 percent over the cast application.

Take-down of the energy consumption for the different processes benchmarked during the manufacturing phase.Click image to enlarge

Emissions of carbon dioxide through the static phase of the different design options (in kg CO2 eq.)Click image to enlarge"DMLS has demonstrated a number of benefits, as it can support the optimization of design and enable subsequent manufacture in low-volume production," says Jon Meyer, Additive Layer Manufacturing Research team leader, in his final report. "In general, the joint study revealed that DMLS has the potential to build light, sustainable parts with due regard for the company's CO2 footprint."

Read more about the Airbus Group Innovations-EOS study.

Similar Articles

New automotive wireless detection technology

New wireless pedestrian detection technology moves cars closer to “computer on wheels”

General Motors is developing a driver assistance feature potentially capable of detecting pedestrians and bicyclists on congested streets or in poor visibility conditions.

Is magnesium the new metal for lighter weight vehicles?

GM says double-digit fuel economy gains possible with more substitution for steel and aluminum

General Motors is testing an industry-first thermal-forming process and proprietary corrosion resistance treatment for lightweight magnesium sheet metal that will allow increased use of the high strength alternative to steel and aluminum.

A 2 for 1 deal

by Mary Scianna

Punch laser combination machine opens doors to new business

Elias Custom Metal Fabrication Ltd. in Vaughan, ON, has something all custom job shops should have to succeed: owners who consistently invest in technology to diversify and grow.

Supersonic car turns to additive manufacturing for help

Renishaw is contributing its knowledge in additive manufacturing to create prototype parts for a supersonic car, which will attempt to break the 1000 mph speed barrier.

Canadian manufacturer supplies waterjet impellers to US Navy

A Canadian manufacturer has supplied the US Navy with 2 sets of four waterjet impellers. Dominis Engineering, Gloucester, ON, is one of only a few manufacturers in the world capable of machining these large, complex rotating components, says president Bodo Gospodnetic.

Stay In Touch

twitter facebook linkedIn